Chemical energy!

Suppose a typical modern family car does about 40 miles to the gallon or, in metric terms, 100 km for every 7 litres of fuel. That means if you have a teaspoon of petrol (about 0.004 litres), it contains enough energy to roll your car about 60 m (200 ft), or roughly 15 times the car’s own length. Consider how hard it is to push a car, even once you’ve got it going from a standstill, and I’m sure you’ll agree that’s quite remarkable. The simple fact is that petrol is absolutely chock full of energy: short of uranium (nuclear fuel), it’s just about the most energy-rich material there is. […]

That’s from Chris Woodford in his article, Why Your Car is a Chemistry Lab on Wheels (“What makes cars one of the most successful inventions of all time? The answer lies in science”).

Fabulous stuff!

Large scale pattern formation

A great article in WiredEarth’s Most Stunning Natural Fractal Patterns by Jess McNally — is on patterns at human scales (leaves, cephalopods, peacock feathres, broccoli), as well as at hugely supra-human scales (mountains, rivers, waterfalls, and lightning). It has absolutely stunning pictures.

Materials in Apple Watch

Here’s a fine piece —

How Apple Makes the Watch — on the materials (specidfically, gold, stainless steel and aluminum) and processes which go into making several key (but non-electronic) components of Apple watch. It uses publicity videos from Apple as a starting point, and describes some of the processing steps (and perhaps the science behind it) seen in those videos.